HITACHI

Inspire the Next

Hitachi Hoists

Hitachi Inverter Rope Hoist

Super V Series: 1/2-10 t
V8 Series: 15-30 t

Further-evolved Inverter Hoist that Employs Further-enhanced Electronic Control Technologies

The Hitachi inverter hoist that made it possible to transport loads in a delicate manner and even in precision operations has been revamped with Hitachi's original inverter added. The external appearance is almost no different from a standard hoist, but the new inverter hoist can be used in a wider range of applications. In addition, it can be used in a wider range of environments, because it is rainproof. The new hoist meets a variety of operation needs with the further-enhanced electronic control technologies as well as the proven and highly-valued functions inherited from previous products including the stepless control (from Speed 1 to Speed 1/10) of the hoisting and lowering and the longitudinal and traversing, the high-speed operation function for no-load operations, the function to reduce the impacts during the hoisting off and lowering onto the floor of the load, and the high positioning accuracy.

Hoisting and lowering speeds: 150% of the rated speed [in no-load operations] From Speed 1 to Speed $1 / 10$
Traversing speed: From Speed 1 to speed 1/10

Traveling speed: From Speed 1 to Speed 1/10

Advantages

Hoists are being widely used as transport cranes. One of their characteristics is that they are being started and stopped frequently. Inverter-based control of hoists allows the service lives of expendable (mechanical) parts to be prolonged and the starting current to be reduced.

1

Highespeed qperation that helps reduce power consumption
When bringing or returning the crane (in no-load operations), the operation time can be shortened by using the high-speed no-load hoisting function and the high-speed traveling function (twice the rated speed). In addition, the function that allows the crane to b started and stopped with reduced impacts reduces the starting current.

Reduction in power consumplion that is achieved when a 3 tinverter hoist is operated with yycles of 5 times per hour
with the hoist installed on a a crane with h hoisting lift of $6 m$, a span of 12 m and 50 am runway.

Service Itives of expendable parts
can bo prolluged
The smooth operation reduces impacts on mechanical parts. This prolongs the times between replacements of parts, thereby reducing the amount of waste.

Leaves more space avallable for use
Through our efforts to make the control section etc. smaller, we succeeded in making the hoist lighter and more compact than our previous products. This means that the new hoist leaves more space available for use.
65 mm shorter and 5 kg lighter than the previous product (3t standard headroom type)) The hoist is a product designed for transporting cargoes.
Iti s not designed for lifting or transporting human beings.

Super V Series and V8 Series

Ease of use and reliability has been further improved with the proven and highly-valued functions inherited from previous products.

Features

Inverter-based operation
The pendant's push buttons provide high operability
Minute changes in the position of the hoist can be made easily, and the user can perform the inching operation in a smooth manner.
Overloading prevention function is provided as a standard function.
When hoisting is attempted of a load that is heavier than the capacity, the winding will be stopped automatically.
Note: The veviloading detection thes enold may vary between 100 and 150% of the capacity
Improved environmental resistance
Because the inverter section is housed in the control panel, the hoist can be used in environments that are on a par with operating environments for standard hoists.

High-speed operation (hoisting and lowering) function for no-load operations
When the hoist is operated with no load, high-speed operation at 150% or
the rated speed will automatically be selected.
Note 1: The no- -oad state detection thesshod mey vary between 0 and 25% of the capacity depending
Note 2 : Certain special lighoh hosising Ilt lith oists camonot be fitted wither th

Electronic limit switch function (upper and lower limits)
This function detects the hook position to allow hoisting and lowering to be stopped automatically with reduced impacts (The user can easily se lime upper and lower mits according to is nes. The upper and lower

Convenient information that makes for maintenance information that is useful for maintenance, such as the number of times of starting, cumulative operation hours, when to replace the capacitor and information on abnormal conditions that have occurred, is displayed.
Pushbutton with 2 depressed positions for changing speed (on products equipped with a pendant with pushbuttons) The first and second depressed positions correspond to the low and high speed settings, respectively. he low and high speed settings ar

Vibration of the load during hoisting is very small. The vibration of the load during hoisting is very small because the starting and stopping impact reduction function reduces the impacts at starting and stopping. This function reduces the impacts on the building and crane girder as well.
Smooth traveling that minimizes the pendular motion of the load during traveling
The smor of the suspended load during traveling.

The contactless main circuit provides high reliability. The main circuiti is of a highly-reliable design that does not use any contactor in the entire main circuit from the inverter power supply to the motor

Reduced impacts on mechanical parts
Because the brake is applied when the motor rotation speed is low, the abrasion of the lining is reduced and so are the impacts on mechanica parts such as the wire ropes, sieves, couplings and gears, which means that the service lives of these parts can be prolonged.
Abnormal condition detection function that protects the hoist (for hoisting and lowering only) When an abnormal condition is detected (through comparison of the operation command with the actual operation performed), the circuit wil be disconnected and the brake will be applied.

Table of Standard Hoist Types

Super V Series (inverter-based control o o hoisting and traversing, inverter-based control of hoisiting oniy)

	Specification								
		$\mathbf{1 / 2 t}$	$\mathbf{1 t}$	$\mathbf{2 t}$	$\mathbf{2 . 8 t}$	$\mathbf{3 t}$	$\mathbf{5 t}$	$\mathbf{7 . 5 t}$	$\mathbf{1 0 t}$
Type									

V8 Series (inverter-based control of hoisting and traversing)				
Specification Type		Capacity		
		15t	20 t	30 t
Standard Headroom Type (P16-P17)	Hoisting	8m 12m	12 m	-
Double-Rail Type (P16-P17)	Hoisting	8m 12m	12 m	12 m

*For information on types other than the ones listed above, please contact us.

Explanation of the product codes

Products equipped with a trolley

Hoist section (catenary type)

Example

Super V Series (10t or less) nverter-based control of hoisting and traversing, pendant-based operation $2.8 \mathrm{HD}-\mathrm{T}_{55}-\mathrm{W}_{3}$ nverter-based control of hoisting only, pendant-based peration $2.8 \mathrm{HD}-\mathrm{T}_{55}-\mathrm{V}_{3}$

V8 Series (15t or more)
Inverter-based control of hoisting and traversing, pendant-based operation, dual-speed 20HD-T88-W *In the V8 Series, there is no product with inverter-based control of hoisting on

Super V Series and V8 Series

Super V Series
Table of standard specifications

$\xrightarrow{\text { capacity }}$ Hoist load			t	1／2	1	2	2.8	3	5	7.5	10
			m	0.51	1.01	2.02	2.83	3.03	5.07	7.65	10.2
Hoisting lift	Standard Headroom Type	Low hoisting litt			6					8	8
	Low Headroom Type		m	${ }^{12}$	$\stackrel{12}{6}$	$\stackrel{12}{6}$	${ }^{12}$	${ }^{12}$	${ }^{12}$	12	12
		High hosisting litt		－	12	12	12	12	11	－	－
	Double－Rail Type	$\frac{\text { Low hosising lit }}{\text { High hisisu }}$	m	－	－		6	${ }^{6}$	8	12	\％
		High hoisting iitt				12	12	12	12	12	12
${ }_{\text {coser }}^{\substack{\text { Inverter－based } \\ \text { contro of hoisting }}}$	Speed＊1		m／s	$\frac{0.022-0.217}{13-13[10.325]}$	$0.022-0.217$［0．325］	0．017－0．167［0．25．	0．015－0．15［0．225］	0．015－0．15［0．225］	0．013－0．133［0．2］	0．012－0．12［0．18］	$0.01-0.10$［0．15］
				1．3－13 19.9	1．3－13 ${ }^{\text {［19．5］}}$	1．0－10［15］	0．9－9．0．［13．5］	$0^{0.9-9.0 .5[13.5]}$	0．8－8．00［12］	$0.72-7.2[10.8]$	0．6－6．0．09．0］
				4	4	4	4	4	4	4	4
Traversing	Spee		m／s	0．042－0．417	0．042－0．417	0．042－0．417	0．042－0．417	0．042－0．417	0．042－0．417	0．028－0．283	0．028－0．283
			m／min	2．5－25	2．5－25	2．5－25	2．5－25	2．5－25	2．5－25	1.7717	1．7－17
	Stanarad leatrom Trpe		kw	0.36	0.36	0.36	0.55	0.55	0.75	0.56×2	0.56×2
	Low Headroom Type Motor Mut			0.36	0.36	0.36	0.55	0.55	0.75		
	Double－Rail Type					0.36	0.55	0.55	0.55	0.55×2	0.55×2
	Speed		m／s	0.35	0.35	0.35	0.35	0.35	0.35	0.233	0.233
		50Hz	m／min	21	21	21	21	21	21	14	14
		60Нz	m／s	0．417	0．417	0．417	0.417	0.417	0.417	${ }^{0.283}$	0．283
			m／min	25	25	25	25	25	25	17	17
		50Hz		0.30	0.30	0.30	0.45	0.45	0.63	0.47×2	0.47×2
	Heaarroom Type	6 Hz		0.36	0.36	0.36	0.55	0.55	0.75	0.56×2	0.56×2
	Low Motor	50Hz		0.30	0.30	0.30	0.45	0.45	0.63	－	－
	Headroom Type output	${ }^{60 \mathrm{~Hz}}$		0.36	0.36	0.36	0.55	0.55	0.75	－	－
	Double－Rail Type	${ }^{50 \mathrm{~Hz}}$		－	－	0.30	0.45	0.45	0.45	0.45×2	${ }_{0}^{0.45 \times 2}$
	No．of poles of the motor		Imadilutumative	${ }_{4}$	${ }_{4}$	${ }^{0.36}$	0.55	0.55	0.55	${ }_{0}^{0.55 \times 2}$	55×2
			Lewneatuon Tipe	4	4	4	4	4	4		
			Double－Ral Type	－	－	4	4	4	4	4	4
Wire rope	Standard Headroom Type		No．otstrands	W	2	（29	2	2	2	咗	硡
			${ }_{\text {Composition }}^{\text {Dianeter mm }}$	${ }_{\text {W }} \mathbf{W}(19.3$－	${ }_{6 \times \mathrm{F}}^{68} \mathrm{l}$（29）－B		${ }_{\text {¢Fi }}(29)$－B			${ }_{\text {F }}^{\text {¢ }}$（29）－${ }^{\text {a }}$	${ }_{\text {Fi }}^{\text {¢ }}$（29）－B
	Low Headroom Type		No．of trands	4	4	4	4	4	4	－	－
			Composition	6×W（19）－B	6×W（19）－B	${ }_{6 \times \mathrm{F}}(29)$－${ }^{\text {a }}$	${ }_{6 \times F \mathrm{~F}}(29)$－${ }^{\text {a }}$	${ }_{6 \times F}(2) 29$－${ }^{\text {a }}$	${ }_{6 \times F \mathrm{~F}}(29)$－	－	－
			${ }^{\text {Diameter }} \mathrm{mm}$	¢4	¢6．3	¢8	\＄10	${ }^{10}$	$\phi 12.5$	－	－
	Double－Rail Type		No．Ofstrands	－	－	${ }_{6 \times \mathrm{F}} \mathrm{l}_{\text {（29）－B }}^{4}$	${ }_{6 \times \mathrm{F}} \mathrm{F}_{(29)-\mathrm{B}}^{4}$	${ }_{6 \times \mathrm{F}}^{4}(29)$－B	${ }_{6 \times \mathrm{F}}{ }^{4}(29)-\mathrm{B}$	${ }_{6 \times \mathrm{F}}{ }^{4}(29)-\mathrm{B}$	${ }_{6 \times \mathrm{F}} \mathrm{F}_{(29)-\mathrm{B}}$
			Diameter mm	－	－	${ }^{\text {¢ }}$	$\phi 10$	$\phi 10$	$\phi 12.5$	¢ 14	\＄16

[^0]V8 Series
Table of standard specifications

CapacityHoist load				15	20	30
				15.2	20.3	30.4
Hoisting lift				${ }_{1} 8$	12	－
			tow hoistingitt		12	
		Double－Rail Type	High hoisiting itit	${ }_{12}^{8}$	${ }_{12}$	12
Hoisting	Mota	Speed ${ }^{* 2}$		$0.01-0.10$［0．15］	$0.008-0.083$［0．125］	0．006－0．055［0．083］
				0．6－6．0［9．0］	0．5－5．0［7．5］	0．33－3．3［5．0］
		Output kW No．of poles		16	18	18
				4	4	4
ng	Motor	Speed		$0.028-0.283$	$0.028-0.283$	0．028－0．283
				1．7－17	1．7－17	1．7－17
		Output kW No．of poles		0.55×2	0.55×2	0.84×2
				4		4
Wire rope		Standard Headroom Type	Number of strands Composition	，	硡	－
		6×Fi（29）－B		$6 \times \mathrm{Fi}(29)-\mathrm{B}$	－	
		Diameter mm	\＄20	¢22．4		
		Double－Rail Type	Number of strands	20	20	，
		${ }^{\text {Composition }}$	${ }_{6 \times \mathrm{Fi}}(29)-\mathrm{B}$	${ }_{6 \times F \mathrm{~F}}^{1}$（29）－B	${ }_{6 \times \text { Fi }}(29)-\mathrm{B}$	
		Diameter mm	${ }^{+20}$	¢22．4	中20	

O Standard specifications

Power supply			Three－phase	200 V 5016 Hz 220 V 60Hz	38 OV 50 Hz $400 \mathrm{~V} 50 / 6 \mathrm{~Hz}$	440 V 60Hz
Operation me		Standard product	Pushbuttons on the pendant Eight pushbuttons designed to be operated by an operator standing on the floor（on，off，up，down，east，west，south and north） ＊The pushbultons with 2 depressed positions are as follows： Inverter－based control of hoisting and traversing：up，down，east，west，south and north Inverter－based control of hoisting only： $\begin{aligned} & \text { up and down } \\ & \text { Inverter－based control of traversing only：} \\ & \text { east and west }\end{aligned}$			
Operation voltage			200VAC or 220VAC 400 times per hour			
Repetitive rating （rate of loading $\leqq 0.63$ ）	Hoisting	Frequency of starting				
		Duty factor				
	ers	Frequency of starting	$\frac{400 \text { times per hour }}{40 \% \text { eb }}$			
Power supply method						
Protection structure			JIS C0920 IP44 ＊In the case of outdoor use，please provide a covered refuge bay so that the hoist is not exposed to rain． ＊The IP rating is for the motor section and the control panel．			
Ambient temperatureHumidity				$-10 \text { to }+40^{\circ}$	out freezing）	
			90\％or ess（without condensation）			
Compliance with standards				JIS C9620（Electric Coists）．a crane structure standard		

Safety instructions for using the product

Standard specification producuts cannot be used in special environments such has the ones

（2）Eviromenents with an
（3）$)$ usty enviomments

 Iiverter colls down（usually 5 minutes or more）befier erestating the hoist． The ivereter hoist requires \mathbf{a} ime period of about 4 seconds beforere itbed

Super V Series (1/2-10i) - Standard Headroom Type Hoists

O Dimensions

Table of dimensions

*1: Dimension W indicates (drive side / driven side).
*2: Dimension U indicates ((low hoisting lift high hoisting Ift).
*4: As the product contains electronic components, be sure to installal a autferinins with the dimensions shown in the \square colored columns will be delivered -

6. Ut the

- Table of dimensions

*1: Dimension W indicates (drive side / driven idid)(7.5t and 100)
*3: Unless otherwise specified by the customer, a product compatible with -beams with the dimensions shown in the colored columns will be delivered
*4. As the product contains electronic components, be sure to installa a buffering mechanism or buffering material on the stoppers for the longitudinal and traversing

Standard Headroom Type Hoists

Table of dimensions

*2: Dimension U indiciates (low hoisting litt high hoisting lift)
*3: Unless otherwis specified by the customer, a product compatible with 1 -beams with the dimensions shown in the \square colored columns will be delivered

Dimensions

7.5t, 10t

- Table of dimensions

* $1:$ Dimension W indicates (divive side/ / driven side) (7.5t and 100).
* 3: Unless otherwise specified by the customer, a product compatible with -beams with the dimensions shown in the colored columns will be deliverea
*4: As the product contains electronic components, be sure to instala a buffering mechanism or buffering material on the stoppers for the longitudinal and traversing.

Low Headroom Type Hoists

O Table of dimensions

*1: Dimension W indiciates (drive side / driven side).
*2: Dimension U indicates (low hoisting Iift thigh hoisting ift).
*4: As the product contains electronic componenent, be se sure to install with -beams with the dimensions shown in the colored columns will be delivered.

6.

O Table of dimensions

Double-Rail Type Hoists

Table of dimensions

Table of dimensions

V8 Series (15-30t) Standard Headroom Type Hoists and Double-Rail Type Hoists

- Dimensions

30t (Double-Rail Type)

- Table of dimensions

*1: Unless otherwise specified by the customer, a product compatible with 1 -beams with the dimensions shown in the \square colored columns sill be delivered.

Installation of Inverter Hoists

$\begin{aligned} & \text { Capacity } \\ & (t) \end{aligned}$	Max. allowable l-beam span (m) (intervals of installation on the building)								
	Size of I-beams used (mm)								
	150×75×5.5	200×100×7	$250 \times 125 \times 7.5$	250×125×10	$300 \times 150 \times 11.5$	$350 \times 150 \times 12$	$400 \times 150 \times 12.5$	$450 \times 175 \times 11$	$600 \times 190 \times 13$
0.5	$\bigcirc 3.0$	-4.5	O7.0	07.9					
1		O3.5	- 5.4	06.4	O8.6	O9.9			
2		O2.3	-4.0	O4.9	06.9	O. 0	O8.5		
3 (2.8)			O2.9	$\bigcirc 3.8$	-5.6	O6.4	07.1	O8.0	
5					-4.1	O4.9	O5.6	06.2	
7.5								-4.5	O7.1
10								-3.9	O6.1
15								-3.1	O4.9
20								Q.7	04.3

Notes: 1. The l-beams and spans shown in the table are for tephers.
2. Span is deteremined by the capacity regardless of the hoist type (standard or low headroom type) or trolley type (manually-pushed, chain-driven or electrically-driven type).

Grounding of the hoist

Securely ground (earth) the hoist in the same way as that for ordinary y lectrical products.

Catenary hoists:

In the case of direct installation on a steel frame structure, ground the hoist completely ${ }^{1} 0$ the shape steel after removing the paint and rust from the contact part to a sufficien degree. In the case of installation on a wooden structure, completely ground the m a body of the hoist using a copper wire with a diameter of 2.6 mm or larger

Stoppers for traversing rails

Stoppers for standard headroom type hoists and low headroom type hoists

Instructions for the instalation of stoppers
for standard headroom type hoists and low headroom type hoists
-After installing a trolley on an I-beam, be sure to install a stopper at the end of the 1 -beam to -Avoid using the hoist in such a way that the trolle, is always stopped by allowing the trolley to collide with the stopper.
Using a stopper whose color is different from the color of the $\mathrm{I}-$-beam makes the stopper prevention.
-Stoppers must be installed in such a way that the wheels on both sides come in contact with them simultaneously.
-Attach buffering material to the surfaces of the toopers so that the impact of collision with the

Dimensions A, B and D must be as specified

 in the table below.

B	70	105	110	190	280	380
D	M10	M16	M20		M24	

The value of Dimension C is determined by the values of Dimension W (wheel interval) and Dimension $\phi \mathrm{P}$ (wheel diameter). Values shown in
the table elew the table below must be used. In the case of special speciications
ϕ P values.

Capacity (t)	$0.5-2$	$28,3,7,5$	5,10	15,20

Stoppers for Double-Rail Type Hoists

OHoists with trolley

Ground the I-beam basically in accordance with the instructions given in the left. Do not paint the traversing surface. As the traversing wheels of the hoist are coated with anti-rust paint, remove the paint from the part that will come in contact with the I beams before installation.

Stoppers must be installed in such a way that the wheels on both sides come in contact with them simultaneously. Cover the stopper surfaces with bber to reduce the impacts of collisions with the hoist.
you use 2 or more low headroom type hoists on he same rail and need a means to prevent collisions a hoist with the preceding hoist, please use the product (damper) shown below.

About installation of stoppers for Double-R Type hoists
-Stoppers must be installed in such a way that the wheels of the hoist come in contact with the both des of the traversing rail simultaneously.
The stopper height ("a") must be at least on
fourth of the wheel rolling diameter.
-Double-Rail Type hoists employ an automatic the Driven side is deviated so that the 4 wheels He Driven side is deviated so that the 4 wheels
contact the surface completely. For this reason, the amount of deviation varies depending on the height difference between the right and left rails. Stoppers must be installed in such a way that the right and left wheels come in contact with the
simultaneously taking into consideration the simultaneousil taking into consideration the
amount of the deviaition due to the rail height
difference.
-The diameter of the wheel rolling contact section of the stopper must be "the wheel rolling diameter

Diameter of the wheel olling
contact section (ϕ))

contact setion (Q0)

Capacity (\mathbf{t})	Wheel rolling diameter $(\phi$ d $)$	Diameter of the wheel rolling contact section $(\boldsymbol{\phi D})$	Stopper height (\mathbf{a})
$\mathbf{2 - 5}$	160	170	40 or higher
$\mathbf{7 . 5 - 1 0}$	195	205	49 or higher
$\mathbf{1 5 - 2 0}$	250	260	63 or higher
$\mathbf{3 0}$	350	360	88 or higher

Weight of the hook block of the hoist

The approximate weight of the hook block of the hoist is as shown in the table below.

	Unit ko)									
Capacity (t)	$\mathbf{0 . 5}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2 . 8}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7 . 5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$
30										
Standard Headroom Type	10	10	20	30	30	70	150	200	200	300
Low Headroom Type	10	10	20	30	30	70	-	-	-	-
Double-Rail Type	-	-	20	30	30	70	150	200	200	300

Notes on the Wiring of Inverter Hoists

- Alternate current reactor for enhancing the power supply and improving the power factor In the case where sudden source voltage changes occur, the power supply capacity is 500 kVA or more and the unbalance rate of the source voltage is 3% or more, install an alternate current reactor on the primary side of the power supply.

Type	Source voltage	Application
ALI- $\square \square \mathrm{L}$ L2	200 C class	($\square \square . . .1 / 2 t, 1 t: 5.5$ 2t-5t:11 7.5t, 10t:22 15t-:33)
H2	400 V	([])...1/2t-2t: 5.5

Recommended earth leakage breaker

$\begin{array}{\|l\|} \hline \text { Rated current } \\ \text { (A) } \end{array}$	Type	
	2000 Class	400 V Class
10		Ex30 (10A)
15	EX30 (15A)	EX30 (15A)
20	Ex30 (20A)	
30	EX30 (30A)	EX50C (30A)
50	Ex50B (50A)	Ex50C (50A)
60	Ex60 (60A)	EX60B (60A)
75	RX100 (75A)	
100	RX100 (100A)	-

About supply of power

In the case where power is supplied via cable: When the traveling distance is short and the traveling path is straight, supplying power via cable is convenient. The cable can be hung like a curtain using
cable hangers or reeled using a cable reel.
In the case of insulated trolley power supply
<Setting up Hitachi ToughTro>
"Hitachi ToughTro" is a safe trolley that prevents electric shocks. It can be used in lieu of bare trolley lines.
-Power supply: 600V or less
Current-carrying capacity: 30-100A (Type E), 150-300A (Type F)
OSpecification: Standard (high-temperature- and corrosion-resistant: Type F) Standard lengths: $15 \mathrm{~m}, 30 \mathrm{~m}, 45 \mathrm{~m}$, $60 \mathrm{~m}, 80 \mathrm{~m}, 100 \mathrm{~m}$
(Production of the 300 A model is "made-to-order" production.)
OSupport span : End-tension type: 6 m or less
Curve sections: 0.5 m or less

Note on noises

Depending on the installation conditions, the operation of the hoist may cause malfunctions of television sets, radio receivers, instruments, etc. located near the hoist, including distortions of video and/or audio on cecified below will tel

Coliector (current collector): 30A, 60A, 100 A
Note: Tandem use is possible. For the transuersal direction, a counterbalance is required.

Permissible lengths for cabtyre cables for supplying power to hoists and the corresponding power fuse capacities (for hoists with electrically-driven traversing trolley)

200V Class																
$\begin{gathered} \text { Capacity } \\ (t) \end{gathered}$	$\begin{aligned} & \text { Hoist Mootor } \\ & (k W W) \end{aligned}$	Power Source	Perrissilite Length of Catyre Cable (m) ffor 3 -core cables]													
			Nominal Sectional Area of Conductor ($\left(\mathrm{m} \mathrm{m}^{2}\right.$)													
1/2	1.2	200050 Hz	55	92	147	257	403									
		200 V 60Hz	63	104	167	292	460									
		220 V 60Hz	60	99	159	278	437									
1	2.3	200 V OHz		50	80	140	219	300	525							
		200 V 6Hz		58	92	162	254	350	612							
		220 V 6Hz		54	86	150	238	326	570							
2	3.5	200 V 5 Hz			44	76	120	175	306	481						
		200 V 0Hz			49	85	134	195	341	536						
		220 V 6Hz			44	78	122	177	310	487						
(2.8)	${ }_{5.0}^{(4.8)}$	200 V OHz				<67>	105	152	266	419						
		200 V 6Hz				(7)	121	176	307	483						
		220 V 6Hz				(71)	111	161	283	444						
5	7.0	200 V 5 Hz						106	185	291	396	502				
		${ }^{2000660 H z}$						${ }^{116}$	202	318	433	549				
		220 V 6Hz						109	191	299	408	517				
7.5	9.5	200V 50Hz							112	176	239	303	479	638		
		200 V 6Hz							127	200	272	345	545	726		
		220 V 6Hz							117	184	251	318	501	668		
10	10.5	200 V OHz							112	176	239	303	479	638		
		200 V 6Hz							127	200	272	345	545	726		
		220 V 60 Hz							117	184	251	318	501	668		
15	16	200 V 5 Hz								124	169	214	338	450	563	703
		200060 Hz								148	202	256	404	539	674	842
		220 V 6Hz								128	175	221	349	466	582	728
20	18	200 V 5 Hz								124	169	214	${ }_{338}$	450	563	703
		200 V 6Hz								148	202	256	404	539	674	842
		220 V 6Hz								128	175	221	349	466	582	728
30	18	200 V 5Hz								123	168	213	336	448	560	700
		200 V 60Hz								146 127	199 173	252 219	398 346	530 461	663 577	${ }_{721}^{829}$
											173	219	${ }^{346}$	461	577	721

${ }_{\substack{\text { capacity } \\(\text { (t) }}}^{\substack{\text { che }}}$	$\begin{aligned} & \text { Hoist Motor } \\ & (k W) \end{aligned}$	Power Surce		Permissille Length of Cabtyre Cable (m) [for 3 -corere cables]								
1/2	1.2			205	${ }_{342}$				8	14	22	38
		400 V	60Hz	214	356							
		$440 \mathrm{~V} \quad 6$	60Hz	214	356							
1	2.3	$380-415 \mathrm{~V} 5$	50Hz	122	204	326						
		400 V 6	60Hz	123	205	329						
		440 V 6	60Hz	123	205	329						
2	3.5	380-415V 5			115	184	321					
		400 V 6	60Hz		115	184	323					
		440 V 6	60Hz		119	191	334					
$\binom{$ (2, }{3}	${ }_{5.0}^{(4.8)}$	$380-415 \mathrm{~V} 5$				143	250	392				
		400 V 6	60Hz			133	233	367				
		440 V 6	60Hz			145	253	397				
5	7.0	$380-415 \mathrm{~V} 5$	50Hz			105	184	290	421			
		400 V 6	60Hz			103	181	285	414			
		$440 \mathrm{~V} \quad 6$	60Hz			107	187	293	426			
7.5	9.5	$380-415 \mathrm{~V} 5$	50Hz				107	168	245	428		
		400V 6	60Hz				111	174	253	443		
		$440 \mathrm{~V} \quad 6$	60Hz				113	177	258	451		
10	10.5	$380-415 \mathrm{~V} 5$					103	161	235	411		
		400 V 6	60Hz				102	160	233	408		
		$440 \mathrm{~V} \quad 6$	60Hz				108	170	247	432		
15	16	380-415V 5	50Hz					123	178	312	490	
		400V 6	60Hz					124	180	315	495	
		$440 \mathrm{~V} \quad 6$	60Hz					123	179	${ }^{314}$	493	
20, 30	18	$380-415 \mathrm{~V} 5$	50Hz					111	161	282	442	764
		$4000{ }^{440 \mathrm{~V}}$	60Hz					112 114	162 166	${ }_{280}^{298}$	446 456	771

Inverter Unit for Saddles

An easy-to-use, high-performance compact inverter unit that comes with a shared protection panel as a standard component. Improves the efficiencies of elaborate operations.

Features

The unit will be ready for use as soon as the installation of the unit and the wiring are complete.
The unit comes with a circuit breaker and a main power supply MgSW as standard components. There is no need to prepare a shared protection panel.

A compact inverter unit that is easy to install
A compact and easy-to-install inverter unit that houses all the components in the panel.
Dramatically reduces impacts on and the pendular motion of the suspended load
The starting and stopping impact reduction function ensures smooth acceleration and deceleration, thereby minimizing impacts on and the pendular motion of the suspended load during traveling.
Speed can be changed to achieve efficient operations.
Traveling speed can be set in 10% increments.
The best speed for the line operation can be selected

- Acid, alkali and saline atmospheres and corrosive gas atmospheres

Environments with an ambient temperature higher than $40^{\circ} \mathrm{C}$
Dusty environments
Environments with a risk of ignited explosion such as environments in which volatile dust or an organic solvent exists For the use of the product in a place with significant power supply noise, we recommend that a noise filter be installed, because such noise can cause malfunctioning of the inverter hoist.
Standard specification products cannot be used in special enviromments such as the ones isted below. Please contact us ifyou need a product that can be used in such environments.

Relationship between the speed and the depressed position of the pushbutton

Schematic diagram of the electrical wiring

Table of specifications

200 V Class

Network

Hitachi Industrial Equipment Systems Co., Ltd. meets customers' needs through the total network which can supply speedy design, production, sales, service and engineering for industrial equipment and systems.

Global Sales Network

North America

U.S.A.

Hitachi America, Ltd.
Industrial Components and Equipment Division 50 Prospect Avenue
Tarrytown, NY 10591
TEL: +1 (914) 631-0600
FAX: +1 (914) 631-3672

Latin America

Mexico

Hitachi Mexico, S.A. de C.V.
Andres Bello No. 10 Piso 10
Col. Chapultepec Polanco
11560, Mexico, D.F.
TEL: +52 (55) 5282-9040
FAX: +52 (55) 5282-9042

Asia

China
Hitachi (Shanghai) Trading Co., Ltd. Hitachi (China) Ltd.
12th Floor, Rui Jin Building No. 205,
Maoming Road (S) Shanghai, 200020
TEL: +86 (21) 6472-1002
FAX: +86 (21) 6472-4990
Taiwan Hitachi Asia Pacific Co., Ltd. (Taipei Office)
3rd Floor, Hung Kuo Building No. 167 Tun-Hwa North Road, Taipei (105) Taiwan
TEL: +886 (2) 2718-3666
FAX: +886 (2) 2718-8180

Hitachi East Asia Ltd. (Hong Kong Office)
6th Floor, North Tower World Finance Centre, Harbour City, Canton Road,
Tsim Sha Tsui, Kowloon Hong Kong.
TEL: +852 2735-9218
FAX: +852 2735-6793
Indonesia
Hitachi Asia Ltd. (Jakarta Office)
Menara BCA 38th Floor, J.M.H. Thamrin
No. 1 Jakarta 10310
TEL: +62 (21) 2358-6757
FAX: +62 (21) 2358-6755
Singapore

Hitachi Asia Ltd.

(Industrial Components \& Equipment Division)
No. 30 Pioneer Crescent
\#10-15 West Park Bizcentral
Singapore 628560
TEL: +65 (6305) 7400
FAX: +65 (6305) 7401

Thailand

Hitachi Asia (Thailand) Co., Ltd.
18th Floor, Ramaland Building, 952
Rama IV Road Bangrak, Bangkok 10500
TEL: +66 (2) 632-9292
FAX: +66 (2) 632-9299
India
Hitachi India Trading Pvt. Ltd.
Units 304-306, 3rd Floor ABW Elegance Tower Jasola District Centre New Delhi-110025, India
TEL: +91 (11) 4060-5252
FAX: +91 (11) 4060-5253

Philippine

Hitachi Asia Ltd. Philippine Branch
17th Floor, Oledan Square, 6788
Ayala Avenue, Makati City Philippines 1226
TEL: +63 (2) 886-9018
FAX: +63 (2) 887-3794

Malaysia

Hitachi Asia (Malaysia) Sdn. Bhd.

Suite 17.3, Level 17,
Menara IMC (Letter Box No.5)
No. 8 Jalan Sultan Ismail, 50250,
Kuala Lumpur
TEL: +60 (3) 2031-8751
FAX: +60 (3) 2031-8758

Viet Nam

Hitachi Asia Ltd. (Ho Chi Minh City office)
The Landmark 4th Floor,
5B Ton Duc Thang Street, District 1
Ho Chi Minh City, Viet Nam
TEL: +84 (8) 829-9725
FAX: +84 (8) 829-9729

Hitachi Asia Ltd. (Ha Noi Office)

Sun Red River Bldg., 5th Floor,
23 Phan Chu Trinh Street,
Hoan Kiem District Hanoi
TEL: +84 (4) 933-3123
FAX: +84 (4) 933-3125

Information in this brochure is subject to change without notice.

(b) Hitachi Industrial Equipment Systems Co., Ltd.

For further information, please contact your nearest sales representative.

Registration number: JACO-EC99J2009
Registration date: July 22, 1996
The Energy Saving Systems Division (Taga Division) of Hitachi Industrial Equipment Systems Co., Ltd. obtained SO 14001 certification, an international standard for environmential management systems.

Registration number: JQA-QMA 12087 Registration date: April 1, 2005
The Energy Saving Systems Division (Taga Division) of Hitachi Industrial Equipment Systems Co.. Ltd. obtained international standard ISO 9001 certification for the quality assurance of the hoist motor block contained in this brochure.

[^0]: figures in $[$ ］are the no－load operation speeds．

